Страница: 8/16
Позже было доказано, что исчезновение эмоций страха прежде всего связано с нарушением функций миндалины и ее связей с нижневисочной корой, где локализованы гностические единицы, реагирующие на эмоциональную экспрессию.
Миндалина у человека — сложное комплексное образование, включающеее несколько групп ядер, расположенных в глубине височной доли и имеющих многочисленные связи со многими структурами мозга. Миндалина ответственна не только за безусловные, но и за условнорефлекторные реакции страха. Отмечено возрастание активности ее нейронов под влиянием сочетания условного сигнала с безусловным раздражением, вызывающим страх. При этом ее нейроны не реагировали на изолированное предъявление условного или безусловного стимула, а также на их случайное чередование. Удаление или разрушение миндалины устраняет ранее выработанные условные рефлексы страха и делает невозможным выработку новых.
Миндалина причастна к формированию не только процедурной эмоциональной памяти, но и декларативной. Она играет критическую роль в эмоциональном и социальном поведении высших млекопитающих, так как принимает участие в декодировании эмоциональных сигналов, посылаемых другими особями, что позволяет строить поведение в соответствии с их смыслом. После двустороннего удаления миндалины у приматов нарушается социальное внутригрупповое поведение, так как животные не могут дать социальную оценку сигналам, главным образом поступающим через зрительный, слуховой и обонятельные каналы и свидетельствующим об эмоциях и намерениях партнеров, которая так необходима для группового поведения. Оперированные животные также не могут связать эту информацию с их собственными эмоциональными состояниями, определяющими их внутригруп-повые симпатии и антипатии. Поведенческие расстройства, вызванные удалением миндалин, связаны с нарушением двусторонней передачи информации между височными долями и гипоталамусом, которая у интактного животного опосредована миндалиной.
Как формируется декларативная эмоциональная память? Предполагают, что сенсорный сигнал от внешнего мира, поступающий из височных областей коры, и сигналы о состоянии внутренней среды, определяемые гипоталамусом, конвергируют на нейронах миндалины, изменяя их синаптические связи. Это обеспечивает формирование стабильных и длительно сохраняющихся следов эмоциональной памяти. Миндалина обеспечивает быстрое и прочное запечатление в памяти эмоциональных событий часто после одноразового обучения.
Функции гиппокампа в процессах памяти
Гиппокамп — древний отдел мозга. Он тесно связан с височными долями. У приматов гиппокамп прижат к миндалине в височной доле. Гиппокамп имеет мощные входные и выходные связи с перегородкой в виде толстого пучка волокон (свода). Мощный вход в гиппокамп представлен волокнами из энториаль-ной коры, куда поступают сенсорные сигналы от нейронов-детекторов и гностических единиц. Волокна энториальной коры достигают гиппокампа либо прямо, либо через зубчатую фасцию, оказывающую тормозное влияние на его нейроны. Другой вход в гиппокамп берет начало в поясной извилине — одной из структур лимбической системы.
По мере изучения гиппокампа менялось представление о его функциях. Сначала он рассматривался как кора обонятельного мозга. Затем широко распространилась точка зрения, что гиппокамп ответствен за формирование долговременной памяти. Первые свидетельства о связи гиппокампа с памятью были получены при нейрохирургических операциях на мозге.
По-видимому, гиппокамп непричастен к формированию ни декларативной, ни процедурной памяти, а только к манипуляции следами памяти. Гиппокамп, скорее, менеджер долговременной памяти.
Научение
Понятия «память» и «научение» психологи и нейробиологи традиционно относят к поведенческим категориям. Они применимы для характеристики целостного организма. Память и научение — неотделимые процессы. Научение обеспечивает постоянное пополнение и изменение наших знаний, а также приобретение новых навыков, умений. В отличие от научения процесы памяти ответственны не только за усвоение (фиксацию), но и за сохранение и воспроизведение (извлечение) информации. В самом широком смысле слова научение можно определить как приспособительное изменение поведения, обусловленное прошлым опытом. Память необходима для научения, так как она представляет собой механизм, с помощью которого накапливайся прошлый опыт, который может стать источником адаптивных изменений поведения.
Научение — совокупность процессов, обеспечивающих приобретение индивидуальной (фенотипической) памяти, вызывающей приспособительную модификацию поведения.
Научение требует определенного времени, условий и реализуется с помощью нейрофизиологических механизмов разного уровня (межклеточного, внутриклеточного, молекулярного).
Виды научения
Существует много разновидностей научения. Они могут быт разделены на несколько групп. Наиболее часто выделяют просто научение, к которому относят привыкание, сенситизацию, ассоцц ативное научение, включающее выработку классического услов ного рефлекса, инструментального (или оперантного) рефлекса одномоментное обучение (на аверсивном подкреплении), и сложномоментное научение (импринтинг, латентное обучение, обучение на основе подражания, когнитивное обучение: формирование декларативной памяти).
Привыкание как простейшая форма научения выражается в ослаблении поведенческой реакции при повторных предъявлениях стимула. От утомления и истощения привыкание отличается тем, что реакцию вновь можно вызвать простым изменением стимула.
Ярким примером поведенческого привыкания является угасание безусловного ориентировочного рефлекса (или его отдельных компонентов). С повторением стимула теряется новизна, что и приводит к привыканию. Привыкание в системе ориентировочного рефлекса получило название негативного научения, состоящего в том, что стимул по мере его повторения теряет способность вызывать ту реакцию, которую он ранее вызывал. Привыкание или угасание ориентировочного рефлекса связывают с формированием «нервной модели стимула» — его многомерной энграммы, которая и тормозит систему активации ориентировочного рефлекса (см. главу «Внимание»).
Сенситизация - другая форма простейшего научения, выражавщаяся в усилении рефлекторной реакции под влиянием сильного или повреждающего постороннего стимула. Сенситизация — это не просто противоположность привыкания. Она является результатом активации модулирующей системы мозга, возникшей на сильный побочный раздражитель. Усиление рефлекса вызвано изменением функционального состояния организма.
Нейронные феномены пластичности
Пластичность— фундаментальное свойство клетки, которое проявляется в относительно устойчивых модификациях реакций нейрона внутриклеточных его преобразованиях, обеспечивающих изменения эффективности и направленности межнейронных связей.
Свойство пластичности нейрона лежит в основе процессов научения и памяти целостного организма, проявляющихся на повенческом уровне. Выделяют несколько основных феноменов пластичности: привыкание, сенситизацию, клеточные аналоги ассоциативного обучения, явления долговременной потенциации и долговременной депрессии, пластичность пейсмекерного механизма клетки.
Привыкание нейрона выражается в постепенном ослаблении его реакции на повторяющийся раздражитель. Восстановление реакции происходит в результате изменения стимула или применения нового, а также после прекращения привычной стимуляции. Время восстановления реакции (секунды — недели) зависит от стимуляции и изучаемого объекта.
Сенситизация нейрона— временное усиление его реакции или появление ее на ранее неэффективный стимул, возникающее в результате какого-либо сильного воздействия (например, электрического тока). Время ее сохранения — от нескольких секунд до дней и недель. Сенситизацию связывают с активацией модулирующих нейронов, вызываемой сильным биологически значимым воздействием.
Пластичность пейсмекерного механизма
Особый вид пластичности обнаруживают пейсмекерные нейроны, способные к генерации эндогенного ритма. Пейсмекеры (водители ритма) представляют собой источники активности мозга. Различают пейсмекеры в виде нейронной сети и отдельных нейронов, способных генерировать ритмическую спайковую активность.
Самый простой сетевой пейсмекер — это по крайней мере два нейрона, соединенных обратной положительной связью. Такая система обеспечивает межклеточную реверберацию сигнала (его многократное отражение). Реверберация реализуется через нервную сеть, так как сигнал выходит за пределы мембраны нейрона, где он первично возник. Воздействуя на один из нейронов сетевого пейсмекера, можно управлять его работой, включая или выключая реверберацию сигнала.
Пейсмекерные нейроны используются для управления реакциями организма. С их помощью реализуются генетические программы (например, локомоции). Благодаря их зависимости от си-наптических влияний они могут обеспечивать более гибкое применение генетических программ в адаптивном поведении.
Пейсмекерный механизм обладает пластичностью, которая выражается в том, что ответ нейрона меняется по мере повторения действия одиночных раздражителей. В том случае, если ответ пейсмекерного нейрона слабеет от применения к применению, этот процесс по аналогии с угасанием поведенческой реакции называют привыканием. Кроме привыкания, имеет место обратный процесс возрастания реакции нейрона от применения к применению. Его называют фасилитацией. Пластические реакции у пейсмекерного нейрона могут обеспечиваться изменением как возбудимости пейсмекерного механизма, так и эффективности синоптической передачи. Пластические свойства пейсмекерного механизма существенно расширяют адаптационные возможности организма в манипуляции генетическими программами поведения.
Реферат опубликован: 16/06/2005 (45568 прочтено)