Физиологические механизмы психических процессов и состояний

Страница: 4/16

Как и другие методы исследования, компьютерную и магнитно-резонансную томографию назначает только врач. Далеко не во всех медицинских учреждениях проводятся эти исследования, поэтому при необходимости постарайтесь обратиться в диагностический центр.

Термоэнцефалоскопия

Данным методом измеряют локальный метаболизм мозга и кро-воток по теплопродукции. Мозг излучает теплолучи в инфракрасном диапазоне. Водяные пары воздуха задерживают значительную часть этого излучения. Но есть два диапазона частотот ( 3-5 и 8— 14 мкм), в которых тепловые лучи распространяются в атмосфере на огромные расстояния и поэтому могут быть зарегистрированы. Этот метод разработан в Институте высшей нервной деятельности и нейрофизиологии РАН и Институте радиоэлектроники (Шевелёв И.А. и др., 1989). Инфракрасное излучение мозга улавливается на расстоянии от нескольких сантиметров до метра термовизором с автоматической системой сканирования. Сигналы попадают на точечные датчики. Каждая термокарта содержит 10—16 тысяч дискретных точек, образующих матрицу 128x85 или 128*128 точек. Процедура измерений в одной точке длится 2,4 мкс. В работающем мозге температура отдельных участков непрерывно меняется. Построение термокарты дает временной срез метаболической активности мозга.

Другие методы

Область прорыва наших знаний в нейронауках связана с методами нейроинтраскопии, основанными на принципе распознавания образов. Среди этих методов наиболее широко используются: компьютерная томография (КТ); метод магнитного резонанса (МР); однофотонная эмиссионная томография (ОЭТ); позитронная эмиссионная томография (ПЭТ). Весь этот комплекс методов позволяет проводить неинвазивное изучение структуры и функций мозга.

Психофизиологическое изучение психических процессов и состояний

Принципы кодирования информации в нервной системе

Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору.

Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др.

Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.

Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости.

Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помошью частоты, а ее интенсивность кодируется числом одновременно активных рецепторов.

В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона. Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности образует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смещается. Для объяснения организации нейронной сети, работающей как детекторная система, Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон основывался на результатах летапьного изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассматривается им как результат формирования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикальном направлениях). В дальнейшем векторная модель была распространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.

Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.

Восприятие

Нейронные механизмы восприятия

Сведения, накопленные за последние десятилетия о нейронах сенсорных систем, подтверждают детекторный принцип нейронной организации самых разных анализаторов. Для зрительной коры были описаны нейроны-детекторы, избирательно отвечающие на элементы фигуры, контура — линии, полосы, углы.

Важным шагом в развитии теории сенсорных систем явилось открытие константных нейронов-детекторов, учитывающих, кроме зрительных сигналов, сигналы о положении глаз в орбитах. В теменной коре реакция константных нейронов-детекторов привязана к определенной области внешнего пространства, образуя константный экран. Другой тип константных нейронов-детекторов, кодирующих цвет, открыт С Зеки в экстрастриарной зрительной коре. Их реакция на определенные отражательные свойства цветовой поверхности объекта не зависит от условий освещения.

Изучение вертикальных и горизонтальных связей нейронов-детекторов различного типа привело к открытию общих принципов нейронной архитектуры коры. В. Маунткасл (V. Моишсазпе) — ученый из медицинской школы Университета Джонса Гопкинса — в 60-х годах впервые описал вертикальный принцип организации коры больших полушарий. Исследуя нейроны соматосенсорной коры у наркотизированной кошки, он нашел, что они по модальности сгруппированы в вертикальные колонки. Одни колонки реагируют на стимуляцию правой стороны тела, другие — левой, а два других типа колонок различались тем, что одни из них избирательно реагировали на прикосновение или на отклонение волосков на теле (т.е. на раздражение рецепторов, расположенных в верхних слоях кожи), другие — на давление или на движение в суставе (на стимуляцию рецепторов в глубоких слоях кожи). Колонки имели вид трехмерных прямоугольных блоков разной величины и проходили через все клеточные слои. Со стороны поверхности коры они выглядели как пластины размером от 20—50 мкм до 0,25—0,5 мм. Позже эти данные подтвердились и на наркотизированных обезьах другие исследователи уже на ненаркотизированных животных (макаках, кошках, крысах) также представили дополнительные доказательства колончатой организации коры.

Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи используют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» Сначала в зрительной коре были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько миллиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз — тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно более параллельно поверхности коры, то клетки с разной глазодоми-нантностью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.

Реферат опубликован: 16/06/2005 (44704 прочтено)