Развивающийся мозг

Страница: 3/3

Если какой-то возрастной этап представить как финишную черту, то можно увидеть, что к данному финишу различные функциональные системы приходят с разной степенью зрелости и совершенства. Какие-то из них уже почти оформились и в дальнейшем лишь незначительно усовершенствуются, другие же только начинают формироваться. В этом и заключается принцип гетерохронности, неодновременности созревания отдельных функциональных систем мозга. Например, быстрее, чем звуковое или вкусовое, совершенствуется зрительное восприятие, а способность понимать обращенную речь возникает гораздо раньше, чем умение говорить.

Установлено, что общая тенденция, характерная для созревания нервной системы, заключается в увеличении скоростей проведения нервных импульсов. Темпы прироста скоростей в разных отделах нервной системы неодинаковы в различные возрастные периоды. Например, у новорожденных наиболее высоки скорости проведения в тех волокнах лицевого нерва, которые связаны с актом сосания. Скорости проведения в нервах верхних и нижних конечностей новорожденного значительно ниже, чем у взрослого человека. В дальнейшем же отмечается быстрое нарастание скоростей проведения импульсов в верхних конечностях, что предшествует появлению у ребенка манипулятивной деятельности. К 8-10 месяцам же, когда у ребенка обычно наблюдаются попытки самостоятельного стояния на ногах, резко повышаются скорости проведения импульсов в нижних конечностях. Когда ребенок овладеет самостоятельной ходьбой, скорость проведения импульсов в нижних конечностях снижается и начинают расти скорости проведения импульсов верхних конечностях, которые быстрее и раньше достигают характерных для взрослых норм.

Из всех этих данных следует, что гетерохрония нарастания скоростей проведения импульсов отчетливо связана с усложнением двигательных функций. Схема лицо – руки – ноги – руки соответствует основным этапам моторного развития ребенка. Более того, нарастание скоростей проведения предшествует формированию новой функции. В этом проявляется принцип опережающего обеспечения функции, характерный для развивающейся нервной системы. Наличие опережающего обеспечения – еще одно доказательство существования биологической программы развития мозга.

Системно-функциональная организация мозговой деятельности.

Несмотря на то что каждая функциональная система и даже ее звенья имеют собственные программы развития, мозг во все периоды жизни работает как единое целое. Эта интегративность предполагает теснейшее взаимодействие различных систем, их взаимную обусловленность. Отсюда вытекает одна из важнейших проблем в изучении развивающегося мозга – исследование механизмов установления межсистемных связей. Мозг остается единым в своей деятельности, но на каждом этапе это уже другой мозг, другой уровень межсистемных взаимодействий. Поэтому даже детальное знание хронологии развития отдельных функциональных систем не позволяет оценить общий уровень развития на каждом конкретном этапе жизненного пути. Представления о системно-функциональной дискретрости мозга должны быть усовершенствованы при изучении межсистемной ансамблевой деятельности. При изучении развивающегося мозга, особенно в первый год жизни, обнаруживается одна закономерность, появление новых форм реагирования сопровождается угасанием, редукцией первичных автоматизмов новорожденного. При этом оба процесса – обновления и редукции - должны быть тонко сбалансированы. Преждевременное угасание первичных автоматизмов лишает новые функции прочного фундамента, ибо в развитии мозга обязателен принцип преемственности. Слишком поздняя редукция «устаревших» форм реагирования мешает образованию новых, более сложных реакций: нервная система словно «застревает» на каком-то уровне развития. Необходима специальная помощь, чтобы «сдвинуть» ее с мертвой точки.

Важная роль сбалансированности процессов редукции и обновления наиболее наглядно выступает в двигательном развитии детей первого года жизни. У новорожденного имеются первичные позотонические автоматизмы, влияющие на мышечный тонус в зависимости от положения головы в пространстве. К концу второго – на третьем месяце жизни эти автоматизмы должны угасать, уступая новым формам регуляции мышечного тонуса, связанным, в частности со способностью ребенка удерживать голову. Если этого угасания не происходит, данные позотонические автоматизмы следует рассматривать как аномальные, ибо они препятствуют удерживанию головы. Далее формируется целая цепочка патологических явлений: невозможность удерживать голову нарушает развитие зрительного восприятия и вестибулярного аппарата; из-за того, что не происходит развития вестибулярного аппарата, не вырабатывается способность к распределению тонуса мышц, обеспечивающему акт сидения. В итоге искажается вся схема двигательного развития, может пострадать текже и умственное развитие.

Следует отметить, что понятие сбалансированности процессов редукции и обновления не сводится только к тому, чтобы одни процессы уступали место другим. Ведь редукция не означает полного исчезновения автоматизмов, а подразумевает их включение в более сложные функциональные ансамбли. Поэтому если опережающее обеспечение нового функционального ансамбля достаточно основательно, то первичный автоматизм, хотя и не редуцируется полностью, все же не нарушает общей схемы развития. Иная картина наблюдается в том случае, когда запаздывание редукции сочетается с замедленным формированием субстрата новых реакций; тогда возникают реальные возможности для ненормальной гипертрофии «архаических» автоматизмов, для «застревания» на каких-то отживших способах реагирования, регулирования функций.

Таким образом, наряду с гетерохронностью развития отдельных функциональных систем и их звеньев необходима и определенная синхронность в их взаимодействиях: на каждом возрастном этапе отдельные системы должны находится в определенной степени зрелости. Пусть эти степени различны, но различия должны быть на данный момент достаточно согласованны, иначе не произойдет полноценного слияния систем в единый ансамбль.

Заключение. Мозг – развивающаяся система.

Эволюция человека как биологического вида завершилась. Однако в течении каждой индивидуальной жизни мозг продолжает оставаться развивающейся, эволюционирующей системой. Результаты этой эволюции определяются многоуровневым взаимодействием биологической программы развития и средовых факторов. Если эволюция живой природы протекала стихийно, то ответственность за индивидуальное эволюционирование каждого мозга ложится на человечество. Изучение системных закономерностей развивающегося мозга – наиболее насущная задача современной науки.

В связи с этим следует отметить, что представление об эволюционировании мозга не ограничивается рамками индивидуального развития. Каждый индивид является носителем общественного сознания, поэтому каждый мозг есть частица коллективного разума и общечеловеческой культуры. Коллективный разум человечества непрерывно эволюционирует, поэтому каждый мозг является элементом гигантской динамической системы общественного сознания, межчеловеческих отношений. Более того, человеческий разум, как это гениально увидел еще в 1927 году В.И.Вернадский, является составной частью жизненной сферы Земли, образуя ноосферу, влияющую на все события в планетарном масштабе.

Таким образом, индивидуальное развитие и развитие общественного сознания тесно взаимосвязаны. Охрана развивающегося мозга подразумевает не только изучение формирования конкретных функциональных систем и межсистемных ансамблей, но и широкие социальные мероприятия.

Список литературы

Бадалян Л.О. «Невропатология»: Учебник для студентов высш. пед. Учеб заведений. 2-е изд., испр. – М.: Издательский центр «Академия», 2001.

Сапин М.Р., Сивоглазов В.И. «Анатомия и физиология человека (с возрастными особенностями детского организма). Москва, Издательский центр «Академия».

Смирнов В.М. «Нейрофизиология и ВНД детей и подростков». Москва, издательский центр «Академия» 2001.

Реферат опубликован: 15/06/2005 (6374 прочтено)