Строение, свойства и биологическая роль биотина и тиамина

Страница: 5/8

II. Реакции транскарбоксилирования, протекающие без распада АТФ, при которых карбоксилирование одного субстрата осуществляется при одновременно протекающем декарбоксилировании другого соедине­ния:

R1—COO- + R2H R1H + R2— COO-

Поскольку все приведенные реакции являются обратимыми, возмо­жен обратимый биосинтез АТФ. Во всех этих случаях имеет место включение С02 в реактивное α-подожение ацил-КоА или винилгомоло-гичное ему положение (при карбо^силировании β-метилкротонил-КоА).

К началу 60-х год5В были выделены и изучены карбоксилазы, осу­ществляющие указанные превращения —В 1960 г. установлено участие биотина в реакции транскарбоксилирования при исследовании синтеза пропионовои кислоты

СНз—СН—СО~S—КоА + СНз—СО—СООН

СООН

СНз-СНа—СО~S-КоА + НООС-СН2—СО—СООН

Биотиновые ферменты представляют собой олигомеры с большим мо­лекулярным весом (порядка 700000) и, как правило, содержат 4 моля связанного биотина на 1 моль фермента, поэтому кажется вероятным, что они состоят из 4 субъединиц с молекулярным весом 175000, каждая из которых содержит одну молекулу биотина.

В работах Lynen (1964) расшифрован механизм участия биотина в реакциях карбексилирования. Установлено, что реакции карбоксилирования являются двухстадийными. Первая стадия сводится к образо­ванию «активной С02» в форме С02~биотинфермента:

АТФ + Н С0-2+ биотинфермент АДФ + Фнеорг. + С02~биотинфермент.

Вторая стадия заключается в переносе «активной С02» на акцептор:

С02~биотинфермент + R2H биотинфермент + R2— С00-

Аналогичный двух стадийный механизм предложен и для реакций транскарбоксилирования:

R1 —С00- + биотинфермент С02 ~биотинфермент R2H;

С02~биотинфермент + R2HR2— С00- + биотинфермент.

После установления существования «активной С02» в виде С02~биотинфермента установлен характер связи между С02 и биотином. Этому способствовало открытие того факта, что β-метилкротонил-КоА-карбоксилаза способна карбоксилировать свободный биотин, пере­водя его в карбоксибиотин. В дальнейшем меченый карбоксибиотип был выделен в опытах с С14-бикарбонатом и идентифицирован как Г-М-карбоксибиотин. Его структура была подтверждена химическим синтезом. К атому времени уже было известно, что в биотиновых фер­ментах карбоксильная группа биотина соединена с ε-NH2-группой лизи­на ферментного белка ковалентной связью. На основании этих данных предложена структура С02~биотинфермента.

Эта структура получила ряд экспериментальных подтверждений и в настоящее время является общепринятой для всех биотиновых фер­ментов. Реакционная способность углекислоты, связанной с биотином, находит выражение в энергетических взаимоотношениях. Величина сво­бодной энергии распада С02~биотинфермента равна 4,74 ккал/моль, что дает основание причислить С02~биотинфермента к «богатым энергией» соединениям.

Исключительно большой интерес представляет совершенно неизучен­ная проблема регуляции активности биотинсодержащих ферментов и организме. В этой связи особенно важны исследования по биосинтезу молекулы биотина и образованию холоферментов из биотина и соответ­ствующего ферментного белка. Данные по первому вопросу изложены в разделе «Биосинтез». Что касается образования холофермента, то можно считать установленным, что во всех биотиновых ферментах био-тнн связан с ε-аминогруппой лизина. Этот способ связи эксперименталь­но доказан почти для всех карбоксилаз и метилмалонил-КоА-оксалоаце-таттранскарбоксилазы. Недостаточные по биотину клетки Propionibacterium shcemanii содержат апофермент и специфическую синтетазу, которая катализирует при использовании АТФ соединение биотина с апоферментом, приводящее к образованию активного холофермента траискарбокснлазы. Необходимыми кофакторами этой реакции являют­ся АТФ и Mg2+. При использовании очищенных ферментов удалось до­казать, что образование холотранскарбоксилазы происходит в два этапа, причем промежуточным соединением является биотиниладенилат (R-CO-5'-AMФ):

Mg2+

I. АТФ + R— С02Н + синтетазаR-СО-5’- АМФ - синтетаза + пирофосфат

(биотин

II. R-СО-5’- АМФ - синтетаза + Н2М-фермент R-CO-NH-фермент +

+5’-AMФ+cинтeтaзa.

Синтетический биотиниладенилат обладает способностью заменить смесь АТФ, MgCl и биотина при синтезе холофермента (Lynen, 1964). Позже было установлено, что образование других холоферментов про­текает аналогичным образом. Все известные ферментативные реакции, для которых установлено участие биотина в качестве кофермента, явля­ются процессами переноса углекислоты. По-видимому, в обратимом при­соединении и отдаче СО; и состоит исключительная функция этого вита­мина в обмене веществ. Однако при биотиновой недостаточности нару­шаются очень многие реакции обмена в интактном организме. Так, - биотин вовлечен в биосинтез белков, дезаминирование аспартата, серина и треонина у бактерий, обмен триптофана, жиров и углеводов, синтез пуринов, образование мочевины у животных и др. Природа участия био­тина во многих из этих реакций остается неясной. Все перечисленные процессы имеют одну общую черту: при изучении in vitro они не тормо­зятся авидином. На основании этих данных считается, что биотин ока­зывает.непрямое действие на указанные превращения, которые катали­зируются ферментами, не содержащими этого витамина.

Ввиду чрезвычайной важности нeкоторых из этих реакций для жизне-деятельности организма необходимо рассмотреть их. Рядом авторов отмечено, что при недостаточности биотина в рационе крыс снижается включение в белок меченых аминокислот. Так, включение (С14-метионина, С14-лейцина и С14-лизина в тканевые белки снижается на 20—40% причем недостаточность биотина влияет на стадию образования амино-ацил-транспортной РНК. Препараты тРНК из печени нормальных крыс включают значительно больше меченых аминокислот, чем препараты печени авитаминозных животных (Dakshinainurti, Misty, 1964). Еще ра­нее было установлено, что у авитаминозных животных нарушается син­тез амилазы в поджелудочной железе и сывороточного альбумина в пе­чени, причем однократное введение 100 мкг биотина восстанавливает способность тканей к синтезу указанных белков. Добавление in vitro α-кетоглутарата и фумарата также восстанавливает образование ами­лазы и сывороточного альбумина (А. А. Познанская, 1957).

Эти данные показали, что биотин не принимает прямого участия в синтезе белка de novo, а его влияние на этот процесс, по-видимому, оп­ределяется вовлечением биотина в синтез субстратов трикарбонового цикла. Такое предположение нашло подтверждение в опытах на цыпля­тах: скармливание сукцината авитаминозным птицам восстанавливало до нормы включение аминокислот в тканевые белки и РНК. Так как об­разование С4-дикарбоновых кислот в организме животных протекает че­рез фиксацию СО2, осуществляемую биотиновыми ферментами, то ста­новятся ясными причины нарушения синтеза белка при биотиновой недо­статочности. В организме авитаминозных цыплят значительно снижены скорость окисления глюкозы до СО2 и включение ее в гликоген печени. Имеются указания на снижение глюкокиназной активности при недо­статочности биотина, хотя витамин не был обнаружен в препаратах кристаллического фермента. Возможно, что участие биотина в обмене. углеводов является непрямым. В результате нарушения утилизации глю­козы в организме животных при исключении биотина из корма наруша­ется превращение D-глюкозы в L-аскорбиновую кислоту.

При недостаточности биотина содержание липидов в печени живот­ных снижается на 30°/о, что обусловлено снижением синтеза жирных кислот. Отсутствие биотина в корме цыплят приводит к повышению со­держания триглицеридов, пальмитиновой и пальмитолеиновой кислот в печени, а также соотношения жирных кислот СО16, СО18 соотношение между насыщенными жирными кислотами при этом снижается. Включе­ние введенных СО14-стеариновой и СО14-пальмитиновой кислот в фосфолипиды значительно повышается при недостаточности биотина, а включе­ние их в триглицериды—снижается. При этом общее количество жир­ных кислот по сравнению с контролем понижено. В печени авитаминоз­ных крыс снижено включение СО14-ацетата в липиды и наблюдается большее содержание ненасыщенных жирных кислот СО16:1 и СО18:2, тогда как уровень стеариновой кислоты снижен. Исключение биотина из кор­ма крыс в течение 60 дней приводит к значительному снижению уровня цитидиловых, адениловых и гуаниловых нуклеотидов в печени. Содержа­ние уридиловых нуклеотидов при этом почти не изменяется, а инозиловых — немного повышается. В то же время отсутствие биотина в ра­ционе не влияет на содержание РНК и ДНК, а также на включение в них Р32, введенного внутрибрюшинно в виде Na2HP32O4.

Наконец, в гомогенатах печени авитаминозных крыс резко снижено образование цитруллина, которое полностью восстанавливается через 24 часа после введения животным биотина. Однако биотин не обнару­жен в препаратах ферментов, участвующих в синтезе мочевины (карбамилфосфатсинтетаза, орнитинтранскарбамилаза и др.) и, по-видимому, в данном случае оказывает непрямое действие на эту реакцию.

6.1 Взаимодействие с другими витаминами. Установлена связь биотина с другими витаминами, в частности с фолиевой кислотой, витамином B12 - аскорбиновой кислотой, тиамином и пантотеновой кислотой. 0собенно тесные взаимоотношения существуют между биотином и фолиевой кислотой. Сначала было показано, что при недостатке биотина в печени крыс значительно снижено общее содержание веществ, обладающих активностью фолиевой кислоты. и что биотин стимулирует биосинтез этого витамина с флорой. Позднее было установлено, что у биотинавитаминозных крыс значительно снижено содержание коферментны.х форм фолиевой кислоты, а именно N5 и N10-формилтетрагидро-фолатов, тетрагидрофолата, N5_ и N10_ формилтетрагидроптероилглутаминовых кислот. Биотин стимулирует синтез метионина из серина и гомоцистеина и процессы метилирования вообще, способствуя накопле­нию коферментных форм фолиевой кислоты. Таким образом, при недо­статочности биотина нарушена утилизация организмом фолиевой кисло­ты и превращение ее в активные коферментные формы. По-видимому, биотин принимает непосредственное участие в ферментативных процес­сах превращения фолиевой кислоты в ее коферментные производные (Marchetti e. а., 1966). Биотин благоприятно влияет на общее состояние организма и сохранение аскорбиновой кислоты в тканях цинготных морских свинок. В свою очередь аскорбиновая кислота замедляет, хотя и не предотвращает развитие авитаминоза биотина у крыс. При недоста­точности биотина снижается содержание тиамина в печени, селезенке,. почках и мозге животных. У крыс, содержавшихся на рационе, лишен­ном биотина, содержание витамина B12 было выше, чем у контрольных животных, получавших биотин. Эти два витамина тесно связаны между собой в обмене пропионовой кислоты у микроорганизмов и животных. Существует тесная связь между биосинтезом биотина и пантотеновой кислоты у микроорганизмов и зеленых растений (В. В. Филиппов, 1962). Биотин облегчает симптомы пантотеновой недостаточности и, наоборот, пантотеновая кислота смягчает проявление авитаминоза биотина.

7. Потребность организма в биотине.

Биотин необходим для человека, животных, растений и большого числа микроорганизмов. Он является фактором роста для многих штаммов, а также многих грибов и бактерий. Однако некоторые дрожжи, грибы и бактерии способны его синтезировать. Потребность в биотине у птиц и животных покрывается за счет синтеза его бактерия­ми желудочно-кишечного тракта. У коров, овец и лошадей, содержащих­ся на обычном рационе, практически исключена недостаточность биоти­на. У свиней и птиц недостаточность биотина может создаваться при использовании кормов, бедных витаминами.

Потребность в биотине у человека покрывается за счет синтеза его микрофлорой кишечника, поэтому ее трудно оценить. С известной до­лей приближения можно считать, что (минимальной ежедневной дозой биотина для животных и человека являются следующие величины (Gyorgy, 1954): для человека— 150—200 мкг, обезьян—20 мкг, крыс— 0,5—3 мкг, цыплят — 0,65—1 мкг, свинец — 100 мкг.

В период беременности и лактации Потребность в биотине у женщин повышается до 250— 300 мкг в день. По другим данным, потребность в биотине значительно ниже и составляет для взрослого человека 30— 40 мкг в сутки.

7.1 Проявление недостаточности биотина

Наиболее подробно недостаточность биотина изучена в опытах на кры­сах и цыплятах при скармливании рационов с большим содержанием сырого яичного белка. Биотиновый авитаминоз у животных характеризу­ется прекращением роста и падением веса тела (до 40%), покраснением и шелушением кожи, выпадением шерсти или перьев, образованием красного отечного ободка вокруг глаз в виде «очков», атактической по­ходкой, отеком лапок и типичной позой животного с согбенной (кенгу-руподобной) спиной. Дерматит, который развивается у жи­вотных при недостаточности биотина, может быть охарактеризован как себорея десквамационного типа, сходная с той, которая наблюдается у детей. У крыс авитаминоз биотина развивается через 4—5 недель скармливания опытного рациона, а у цыплят первые признаки авитами­ноза появляются через 3 недели.

Помимо внешних признаков, биотиновый авитаминоз вызывает глу­бокие морфологические изменения в тканях и органах, а также нару­шения в обмене веществ. Известны изменения в зобной железе, коже и мышцах крыс. Характерны обильный гиперкератоз, акантез и отеки. Разрушенные волосяные стволы перемешаны с гиперкератозными пла­стинками. Установлено расширение волосяных сумок, отверстия которых закупорены гиперкератозным материалом. В последней фазе разви­тия авитаминоза наблюдается атрофия жира в гиперкератозных пла­стинках. Недостаток биотина в рационе крыс приводит к уменьшению его содержания в тканях. В печени и мышцах количество витамина сни­жается в 5 раз, а в мозговой ткани—на 15%. В крови авитаминозных крыс накапливается пировиноградная кислота, развивается ацидоз и снижается концентрация сахара. При этом глюкозурия не наблюдает­ся, но уменьшается содержание редуцирующих Сахаров в печени при нормальном содержании их в мышцах; у животных развивается креа-тинурия.

Человек полностью удовлетворяет свою потребность в биотине за счет синтеза его микрофлорой кишечника, поэтому гиповитаминоз мож­но получить только в эксперименте. Экспериментальную недостаточ­ность биотина у человека наблюдали Sydenstricker и соавторы (1942) путем включения в диету ежедневно 200 г сырого яичного белка. Через 3 недели появилось шелушение кожи без зуда. На 7—8-й день развилась пепельная бледность кожи и началась атрофия вкусовых сосочков языка. Позднее появились мышечные боли, повышенная чувствитель­ность, болезненные ощущения, вялость, сонливость, тошнота и потеря аппетита. В крови уменьшилось содержание эритроцитов и холестерина. Выделение биотина с мочой снизилось в 7—8 раз против нормы (с 29— 52 до 3,5—7,3 мкг в сутки). Введение 150 мкг биотина уже на 3—4-й день устраняло депрессию, мышечные боли и восстанавливало аппетит.

Таким образом, недостаточность биотина у человека в первую оче­редь вызывает поражения кожи. Более тяжелые проявления требуют, по-видимому, большей длительности авитаминоза.

8. Профилактическое и лечебное применение биотина.

В настоящее время применение биотина в клинике с лечебной и профилактической целью изучено недостаточно. Большое значение биотина для нормального состояния кожных покровов привело к попыткам лечения биотином ряда кожных заболеваний. Биотин показан при себорейном дерматите у грудных детей, связанном, возможно, с явлениями недостаточности этого витамина. Заболевание излечивается при ежеднев­ном введении 5—10 мкг биотина в течение 4 недель. Отмечен успех при длительном применении биотином в тех случаях дескваматозной эритродермии, когда недостаточность биотина была в числе причин заболевания. Лечебная доза биотина составляет 150—300 мкг в сутки; вводится он-парентерально.

Г. И. Бежанов в 1966 г. сообщил о применении биотина в комплексной терапии псориаза. Наблюдения, проведенные за большой группой больных, показали, что биотин проявлял противозудный эффект, а соче­тание биотина с фумаратом, витаминами группы В и бальнеотерапией потенцированный и более быстрый клинический эффект. В процессе лечения у значительного большинства больных рассасывался инфильтрат, уменьшалось или полностью прекращалось шелушение. Автор рекомендует применять биотин в комплексном лечении псориаза.

В последние годы появился ряд сообщений о целесообразности при­менения фармакологических доз биотина п комплексной терапии атеро­склероза и гипертонической болезни.. Эти данные представляют особый интерес в связи с участием биотина в синтезе холестерина.

О. К. Докусова и А. Н. Климов в 1967 г. сообщили о предотвращении биотином экспериментального атеросклероза у кроликов при скармлива­нии больших доз холестерина. Введение биотина в количестве 400 мкг в день предупреждало развитие атеросклероза. Содержание холестери­на, β -липопротеидов и фосфолипидов в стенке аорты животных, полу­чавших холестерин и биотин, не отличалось от содержания этих компо­нентов в аорте здоровых кроликов, тогда как в аорте животных, полу­чавших холестерин без биотина, содержание холестерина и β-липопро-теидов было резко повышено. Авторы считают, что снижение содержания холестерина вызвано окислением его в печени. В настоящее время изве­стно, что пропионат является основным трехуглеродным фрагментом, от­щепляющимся от боковой цепи холестерина на первых этапах окисле­ния холестерина в желчные кислоты. Можно предположить, что стиму­ляция окисления холестерина биотином связана с активацией окисления пропионовой кислоты (через образование янтарной кислоты путем кар-боксилирования пропионовой кислоты), поскольку пропионил-КоА-кар-боксилаза является биотинсодержащим ферментом.

В. Д. Устиловский и др. (1967) сообщил, что после 7-дневного вве­дения внутрь фармакологических доз биотина у больных атеросклеро­зом, отмечалось статистически достоверное снижение содержания обще­го, холестерина и β -липопротеидов в крови, тогда как у здоровых людей биотин не влиял на изучаемые показатели. У больных атеросклерозом и гипертонической болезнью применение фармакологических доз биоти­на приводит к значительному снижению выведения с мочой тиамина и аскорбиновой кислоты (М. А. Лис, 1967; Д. П. Калкун, 1967).

Таким образом, биотин способствует усвоению этих витаминов в орга­низме больных. Учитывая благоприятное влияние биотина на ряд пока­зателей липидного обмена у больных атеросклерозом и гипертонической болезнью, а также повышение усвоения тиамина и аскорбиновой кисло­ты, авторы рекомендуют применять биотин при этих заболеваниях в до­зе 1 мг в день внутрь в комплексной терапии,

С возрастом в крови людей снижается содержание пантотеновой кислоты, витамина В6 и биотина (В. И. Титов, 1966). У больных гиперто­нией и атеросклерозом в возрасте 80—88 лет содержание биотина было в 2,4 раза меньше, чем у здоровых молодых людей. Установлено сни­жение содержания биотина в крови больных, жаловавшихся на слабость, недомогание и легкую утомляемость. Автор рекомендует применять пантотеновую кислоту, витамин В6 и биотин при преждевременной старо­сти для устранения явлений гиповитаминоза и связанного с ним наруше­нием обмена веществ. Некоторыми исследователями обнаружено высокое содержание биотина в тканях ряда раковых опухолей, что приве­ло к попыткам воздействовать на развитие рака путем вызывания биотиновой недостаточности. Однако эти попытки не дали положительных результатов.

Таким образом, сейчас накапливаются данные, позволяющие реко­мендовать применение биотина при некоторых болезнях кожи, наруше­ниях жирового обмена и сердечно-сосудистых заболеваниях. Однако для более широкого использования биотина в клинике необходимо даль­нейшее изучение как его физиологического действия, так и показаний к лечебному применению.


Тиамин

Исторические сведения

Первые упоминания о заболевании (какке, бери-бери), известном сейчас как про­явление недостаточности тиамина, встречаются в древних медицинских трактатах, до­шедших до нас из Китая, Индии, Японии (Bicknell, Prescott, 1953; Inouye, Katsura, 1965). К концу прошлого столетия клинически уже различали несколько форм этой патологии, но только Takaki (1887) связал заболевание с какой-то, как он тогда полагал, недостаточностью азотсодержащих веществ в пищевом рационе. Более определенные представления были у голландского врача С. Eijkman (1893—1896), обнаружившего в рисовых отрубях и в некоторых бобовых растениях неизвестные тогда факторы, предупреждавшие развитие или излечивавшие бери-бери. Очисткой этих веществ занимались затем Funk (1924), впервые предложивший сам термин «витамин», и ряд других исследователей (Wuest, 1962). Извлеченное из естественных источников актив­ное вещество только в 1932 г. было охарактеризовано общей эмпирической формулой, а затем (1936) успешно синтезировано. Еще в 1932 г. высказывалось предположение о роли витамина в одном из конкретных процессов обмена веществ—декарбоксилировании пировиноградной кислоты, но лишь в 1937 г. (Lohman, Schuster) стала известна коферментная форма витамина—тиаминдифос-фат (ТДФ). Коферментные функции ТДФ в системе декарбоксилирования ct-кето-кислот долгое время представлялись почти единственными биохимическими механиз­мами реализации биологической активности витамина, однако уже в 1953 г. круг ферментов, зависящих от присутствия ТДФ, был расширен за счет транскетолазы, а совсем недавно и специфической декарбоксилазы γ-окси-α-кетоглютаровой кислоты. Нет оснований думать, что перечисленным исчерпывается перспектива дальнейшего изучения витамина, так как эксперименты на животных, данные, получаемые в кли­нике при лечебном применении витамина, анализ фактов, иллюстрирующих извест­ную нейро- и кардиотропность тиамина, с несомненностью указывает на наличие еще каких-то специфических связей витамина с другими биохимическими и физиологи­ческими механизмами (В. Б. Спиричев, 1966; Ю. М. Островский, 1971).


2. Химические и физические свойства витамина В1

Тиамин (В. М. Березовский, 1959; В. А. Девятнин, 1964), или 4-метил-5-β-оксиэтил-N- (2-метил-4-амино-5-метилпиримидил) -тиазолий, получа­ется синтетически обычно в виде хлористо-или бромистоводородной соли:


-Рйаминхлорид (М-337,27) кристаллизуется с ½ Н2О в бесцветных моноклинических иглах, плавится при 233—234° (с разложением). В нейтральной среде его спектр поглощения имеет два максимума — 235 и 267 нм, а при рН 6,5 Один — 245—247 нм. Витамин хорошо растворяется в вода и уксусной кислоте, несколько хуже в этиловом и метиловом спиртах и нерастворим в хлороформе, эфире, бензоле, ацетоне. Из водных растворов тиамин может быть осажден фосфорно-вольфра-мовой или пикриновой кислотой. В щелочной среде тиамин подвергает­ся многочисленным превращениям (Metzler, 1960), которые, в зависи­мости от природы добавленного окислителя, могут завершаться образо­ванием тиаминдисульфида (X) или тиохрома (IX).

В кислой среде витамин разлагается только при длительном нагре­вании, образуя 5-гидрокси-метилпиримидин, муравьиную кислоту, 5-аминометилпиримидин, тиазоловый компонент витамина и З-ацетил-3-меркапто-1-пропанол. Среди продуктов распада витамина в щелочной среде идентифицированы тиотиамин, сероводород, пиримидодиазепин и др. Получены также сульфат и мононитрат витамина. Известны соли тиамина с нафталенсульфоновой, арилсульфоновой, цетилсерной и эфиры с уксусной, пропионовой, масляной, бензойной и другими кисло­тами.

Особое значение имеют эфиры тиамина с фосфорной кислотой, в частности ТДФ, являющийся коферментной формой витамина. Полу­чены (Fragner, 1965; Schellenberger, 1967) гомологи тиамина путем различных замещений у второго (этил-, бутил-, оксиметил-, оксиэтил-, фенил-, оксифенил-, бензил-, тиоалкил-), четвертого (окситиамин) и шестого (метил-, этил) атомов углерода пиримидина метилированием аминогруппьь, замещением тиазоловогоинхла на пиридиновой (пиритиамин), имидозоловый или оксазфювый, модификациями заместителей у пятого углерода тиазола (метил-, оксиметил-, этил-, хлорэтил-, оксипропил- и др.). Отдельную большую группу соединений витамина со­ставляют S-алкильные и дисульфидные производные (Matsukawa e. а., 1970). Среди последних наибольшее распространение как витаминный препарат получил тиаминпропилдисульфид (ТПДС).

3. Распространение витамина В1, в природе.

Тиамин распространен повсеместно и обнаруживается у разных пред­ставителей живой природы (Р. В. Чаговец и др., 1968). Как правило, количество его в растениях и микроорганизмах достигает величин зна­чительно более высоких, чем у животных. Кроме того, в первом случае витамин представлен преимущественно свободной, а во втором — фосфорилированной формой. Содержание тиамина в основных продуктах питания колеблется в довольно широких пределах в зависимости от места и способа получения исходного сырья, характера технологической обработки полупродуктов и т. п. Величины, приводимые по этому пово­ду в литературе (Ф. Е. Будагян, 1961; В. В. Ефремов, 1969; П. И. Ши­лов, Т. Н. Яковлев, 1964), характеризуют, как правило, уровень витами­на до кулинарной обработки, которая сама по себе значительно разру­шает тиамин. В среднем можно читать, что обычное приготовление пищи разрушает около 30% витамина. Некоторые виды обработки (вы­сокая температура, повышенное давление и наличие больших коли­честв глюкозы), разрушают до 704-90% витамина, а консервация про­дуктов путем обработки их сульфитом может полностью инактивировать витамин В злаковых семенах других растений тиамин, подобно большинству водорастворимых витаминов, содержится в оболочке и за­родыше. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.

Содержание тиамина в некоторых продуктах питания (В. В. Ефремов, 1960)

Продукт

Содержание тиамина в мкг %

Продукт

Содержание тиамина в мкг %

Пшеница

0,45

Томаты

0,06

Рожь

0,41

Говядина

0,10

Горох

0,72

Баранина

0,17

Фасоль

0,54

Свинина

0,25

Kpупa овсяная

0,50

Телятина

0,23

>>гречневая

0,51

Ветчина

0,96

>> манная

0,10

Куры

0,15

Рис шлифованный

0,00

Яйца куриные

0,16

Макароны

следы

Рыба свежая

0,08

Мука пшеничная

0,2—0,45

Молоко коровье

0,05

>> ржаная

0,33

Фрукты разные

0,02—0,08

Хлеб пшеничный

0,10—0,20

Дрожжи пивные сухие

5,0

>>ржаной

0,17

Орехи грецкие

0,48

Картофель

0,09

» земляные

0,84

Капуста белокочанная

0,08

Реферат опубликован: 15/06/2005 (16982 прочтено)